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Abstract. A simple screened Coulomb model is used to investizate the crossover from ionic 
to metallic behaviour of the pair structure and longitudinal collective modes in metal-salt 
solutions. with specific application to K,(KCI),.z. 

Solutions of alkali metals in their halides are interesting ionic Liquids which allow a 
detailed study of the variation of electron transport and of ionic structure and dynamics 
with metal concentration, x [l]. The peculiar dependences on x of the partial ionic 
structure factors [2], and of the excess molar volume [3] reflect the change of the valence 
electron states [4] and of their screening efficiency in going from the pure metal to the 
pure salt. UThile the structural and dynamic properties of pure liquid alkali metals (x = 
1) and pure molten alkali halides (x = 0) are relatively well understood [5] ,  much less 
theoretical work has been devoted to their mixtures. A simple model, where electrons 
are treated as a rigid uniform background, leads to a pair structure [6] in qualitative 
agreement wzith experiment [2]. A hydrodynamic analysis of the same model leads to 
unexpected, but inconclusive predictions for the long-wavelength collective modes that 
appear to be very sensitive to the polarization of the valence electrons 171. 

In this letter we introduce a simple model in which the ions interact via a screened 
Coulomb potential, and the screening length A varies with the density of valence 
electrons, i.e. withx. The model is designed to interpolatesmoothly between reasonable 
interaction potentials for pure metal and pure salt. This allows us to investigate the 
variation of the pair structure withx, and to analyse, for the first time, the evolution of 
the longitudinal collective modes with metal concentration for wavenumbers k which 
are accessible to inelastic neutron scattering experiments. 

We consider a metal-salt solution M,(MX),-,, where M denotes the cation, X the 
anion and x the metal concentration. Treatment will be limited to a fully symmetric 
system where anions and cations have opposite charge (?e)  and equal mass m; we have 
in mind the widely studied metal-salt solution K,(KCl),_,. If n is the total number 
density of the ions, the corresponding density of the conduction electrons will be no = 
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[x / (2  - x ) ] n .  and a convenient length scale is the ion sphere radius a = (3/4m)'". The 
interactions of the ions are described by the following set of model pair potentials: 

uwp(r)  = (1 - d,@)Bexp(-Ar) + (Z,Zae2/r)e-'in (1) 
where 1 S (Y, 6 s 2 are species indices and 2, (= 51) is the valence of ion species CY. 

The first term describes the Born-Mayer short-range repulsion between unlike ions; the 
parameters A and 5 are chosen identical to those of the Tosi-Fumi potential for the 
corresponding pure molten salt [8]. The second term on the right hand side of (1) is the 
screened Coulomb potential between ions. Theconcentration dependence ofAis chosen 
to be the same as that of the temperature- and density-dependent Thomas-Fermi (TF) 
screening length AV. In the pure metal (x  = l ) ,  the temperature Tis much less than the 
electron Fermi temperature TF, and A V  reduces to the zero-temperature screening 
length, AV - ng'ib. However, in order to achieve good agreement between the cal- 
culated and experimental structure factor of the pure metal (see below), we found that 
,Iw must be rescaled to a somewhat larger value A = CAv; for liquid K at T = lo3 K, the 
optimum 5 turns out to be 1.6. This rescaling may be regarded as a compensation for 
the crudeness of the TF description of electron screening. The same scaling factor, C, has 
been kept for all concentrations, x ,  so that finally, along an isotherm, A(x)  = CA,.&). 

For low metal concentrations ( x - t  0), the electron Fermi temperature TF Q T ,  and 
the TF screening length of the nearly classical electrons reduces to the Dehye screening 
IengthA, - n o @ .  Forthepuremoltensalt (x  = O),theion-ionpairpotentials(1)reduce 
to the familiar Tosi-Fumi form, without the Van der Waals dispersion terms, which 
should have averyminorinfluenceon theionicpair structure. The latter ischaracterized 
by the partial structure factors: 

SmP(k) = ~ ( p ~ ~ p - ~ ~ )  = 6 ,  + (x ,xg) l iZn [g,o(r) - 11 eik.'dr 

where N, and pie denote the number of ions and the Fourier component of the micro- 
scopic density of species CY, x, = N,/N with N = N I  + Nzr while &&r) denotes the 
partial pair distribution function between ions of species (Y and 6.  We have calculated 
S and from numerical solutions of the recently proposed HMSA integral equation, 
which is thermodynamically self-consistent, and has been shown to be remarkably 
accurate for a wide variety of liquids, including molten salts [9]. In particular the HMSA 
closure is much more accurate than the familiar HNC closure used in earlier work on 
metal-salt solutions 161. 

In order to check the consistency of our model, we have applied the above procedure 
to K,(KCI), -I solutions. In figure 1 we show the results obtained for the partial structure 
factors Si,(k) =Z Szz (k )  and S,,(k) of the pure molten salt KCI at T = 1050 K. together 
with the rigid-ion molecular dynamics (MD) data of Dixon and Gillan [lo] who used pair 
potentials identical to (1). except for the inclusion of Van der Waals dispersion terms. 
The agreement is seen fo be excellent. Our HMSA calculations, as well as the simulations, 
werecarriedout at theexperimental molar volume V ,  = 50 cm3. The calculated pressure 
turns out to be too high (P = 10.2 kbar), which is not unexpected since our model omits 
theVander Waalsattractions betweeni0ns;ifthese areincluded, the pressurecomputed 
from theHMsAintegralequationdropsto3.5 kbar,ingoodagreement with theMDresult 
under identical conditions [lo]. 

Thestructure factor calculated for pureliquid Kat the same temperature iscompared 
with the neutron scattering data of Jal 1111 at T =  973 K and a molar volume V,,, = 
60 cm3 in figure 2. Interestingly, the total calculated pressure, including the electronic 
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Fiure 1. Partial structure factors(a)S,,(k) and ( 6 )  &(k) for thepuresalt(KC1). ascalculated 
from the HMSA equation, versus k X  = ka, for T = 1050 1< and V. = 50 cm3. The full circles 
aremdatafrom[IO]. 

1.0 

Figure 2. Structure factor S(k) S,,(k) of pure 
liquid K, as a function of k’ for T = 1050 K and 
v. = 60cm’calculated from the HMSA equation. 

5 IO The full circles are neutron diffraction data 1111 
for the same volume, and T = 973 K. 

0 
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contribution, is very close to that obtained for pure KCI (P = 10 kbar). The results 
shown in figures 1 and 2 point to the consistency of our model for the two limiting 
concentrations x = 0 and 1. We have extended the HMSA structure calculations to 
intermediate concentrations x ,  assuming a linear dependence of the molar volume onx,  
i.e. ignoring the relatively large excess volumes observed experimentally [3]. 

The resulting pair structure was used as an input to a generalized Langevin equation 
analysis of longitudinal collective modes in metal-salt solutions, for wavenumbers k 
accessible to inelastic neutron scattering experiments [ 121. Following the familiar Mori- 
Zwanzig formalism [5], we chose a dynamical set A(k) made up of the conserved 
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variables, namelythelocal numberdensity, the localchargedensity, and thelongitudinal 
mass current density, plus the non-conserved longitudinal charge current density: 

PIIN(t) = c l / a ) b k l ( t )  + pkZ(r)l A k l ( r )  ( 3 4  

P U ( Q  = ( W % P k l W  - Pe(01 S A k d t )  (3b )  

j d t )  = P d i k  =A,(! )  (34 
jU( t )  = pU/ik = Ak4(t) .  ( 3 4  

Since the energy density is not included in the basic set of dynamical variables, the 
present analysis neglects temperature fluctuations, a reasonable approximation for ionic 
systems. 

The 4 x 4 correlation function matrix has elements C,r(k, t )  = (A&A-w(O))/N. 
Its Laplace transform C(k, z )  obeys the generalized Langevin equation: 

[ z 6 ,  - iQ&) + U,&, z)]C,& 2) = c&) (4) 
where summation over repeated indices is implied. The elements Ceo(k) = 
C,&, t = 0)  of the static correlation function matrix, and of the secular frequency 
matrix a(k) are expressible in terms of static quantities. The memory function M(k, t )  
is defined as the ratio of the random force autocorrelation function, Rep(k, r) = 
( fh ( t ) f -k f l ) /N ,  over C(k). With the choice of dynamicalvariables (3),fk,(t) =fn(t)  = 0 ,  
and the memory function matrix has only four non-zero elements (M,,, M%, Mq3 and 

For the random force autocorrelation function matrix k ( k ,  z )  we adopt a simple 
relaxational amotz based on a low-frequency approximation [13]. Adapting the results 
of (131 to the present case, we obtain: 

M44). 

Rep(k . z )  = ~ p ( k ) / [ z  +z,(k)] + dm+dk)/b + z&)l ( 5 )  
where the coefficients c , ~  and dcp are related to the initial values Me6Jk) = 
M,(k , r=  0), while z 3  and, z4 are the real positive roots of the determinant, 
[z21 - M(k)] = 0. Thisentirelydeterminesthememoryfunctionmatrixnjlin(4). Propa- 
gating collective modes are signalled by peaks in the spectra Ceo(k, w )  = lim,,,RC 
( z  = iw + E ) / X  of the correlation functions; these resonances are associated with the 
poles of the C’,& z )  satisfying (4) which are the complex roots of the dispersion 
equation: 

z4 + [A?,, + M,]z3 + [A?= - Mu - M % M 4 3  - (uok)’(S1, + Szz)/A]zz 
~~~~ ~~~~ ~~~~~~ -+ (ku&ffi)[sL31M, + S 2 4 2 M 3 3  - St,,M,, - ~ a 3 2 M 4 3 ] 2  

+ ( u , , ~ ) ~ / A  = 0 (6) 
where A(k)  = S,,(k)S,(k) - S:,(k) and U; = (k,T/m). The elements of the secular 
frequency matrix i a  are all proportional to k and entirely determined by the partial 
structure factors. 

In the pure salt, ( k ~ ~ ) ~ / A ( k )  approaches (c,k)’w? in the k-t 0 limit, where cT = 
(mnx~) - ’”  is the isothermal sound velocity (,y~ is the compressibility) and wp = 
(4m2eZ/m)*fl i s  the plasma frequency. Similarly ( k ~ ~ ) ~ [ S , , ( k )  + S n ( k ) ] / A ( k )  = 
w i  + O(k2). Hence, neglecting all damping, which amounts to setting M(k, I) = 0 in 
(6) ,  the dispersion equation admits the solutions zz = ( c & ) ~  and w’, to leading order in 
k ,  corresponding to longwavelength sound and optic modes. In the k + 0 limit only the 
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Figure 3. Dispersion CUNCS of the acoustic and optic modes in metal-salt solutions for metal 
concentrations* = 0,0.2,0.6 and 0.8. The full curves and vertical bars correspond to the 
real and imaginary parts of the complex mots of ( 6 )  ( z  = w + i y ) .  The full and open circles 
indicate the positionsof the peaks in the mass and charge density Ructuationspfftra &,,(k, w )  
and SZz(k,  U ) ,  respectively, 

fiM matrix element is non-zero, reflecting the non-conserved nature of the charge 
current; this leads to an increase of the optic mode frequency above w [5,8]. 

In the pure metal, ( k ~ ~ ) ~ / A ( k )  and (kuo)’[S,,(k) + S,(k)]PA($ approach 
( k ~ ~ ) ~ ( k c ~ ) ~  and ( k ~ ~ ) ~  + (c,k)’, respectively, when k+ 0. Neglecting M(k, z )  in (6), 
the dispersion equation yields the two roots zz = ( c ~ k ) ~  and (U&)’; the first is the usual 
sound mode, while the second has no physical significance for x = 1. However, for 
intermediate concentrations (0 < x < l), both &(k + 0, z )  and a,(k d 0, z )  are non- 
zero. These have a drastic effect on the pole at (kuo)’, which is changed into a high- 
frequency optic mode for all x < 1. 

For finite values of k, we have used the HMSA output to compute the k-dependent 
coefficientsin (5)  and (6). Theresultingdispersioncurves, with vertical barsrepresenting 
the imaginary part of the roots, characterizing the damping, are plotted in figure 3, for 
four concentrations, Y. The optic mode frequency drops rapidly below its pure salt 
value as x increases, and the optic and acoustic branches cross at k* = ka = 2, so that 
interference effects are to be expected in the intermediate wavenumber range. 
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The same figure also shows the positions of the peaks observed in the mass (or 
density) fluctuationspectrumS,,(k, w )  = &(k, w )  (for the acousticmode), and in the 
charge fluctuation spectrum S,,(k, w )  (for the optic mode), as a function of k. In the 
pure metal, the sound peak in S,dk, U )  is well defined up to k* = k; = 2.9, where it 
vanishes; this wavenumber is about 0.7 ko, where ko is the position of the main peak in 
the static structure factor S"(k) (cf figure 2), a situation very similar to experimental 
results for liquid Rb [ 141. The reduced sound velocity determined from the initial slope, 
c* = w*/k* (where w *  = wu/uo) turns out to be 5.0, slightly above the isothermal value 
c $  =4.2. Forx=0.8,thesoundpeakpersistsuptok; =2.3andforx =0.6onlyupto 
k; = 0.3, while for lower metal concentrations, the sound mode is always overdamped, 
since it fails to yield a peak in SNdk, U ) ,  as already observed in MD simulations of pure 
salts [15]. 

Turning to the optic mode, which is signalled by a peak in SZz(k, w ) ,  it is seen to 
persist in the pure salt up to k; = 2.4, where w*(k = 0) = 18.8 = 1.25w,*. The effect of 
electron screening on the optic mode is seen to be dramatic at x = 0.2. The screening of 
the Coulomb interaction between ions leads to overdamping of the optic mode at small 
k; the peak in S,,(k, w )  only appears in a narrow wavenumber range around k* = 2, 
which is of the order of the inverse electron screening length u/A. For x = 0.4 and 0.6 a 
peak is seen in S,,(k, w ) ,  which may be associated with a coupling between optic and 
acoustic modes in the region of overlap of their dispersion curves. 

This subtle interplay between acoustic and optic branches of the longitudinal exci- 
tation spectrum for wavenumbers k = k0/2, deserves further theoretical and exper- 
imental investigations. 

The authors are indebted to Jean-Louis Barrat for his assistance during the early stages 
of this work. Parts of this work were carried out while FY was a visiting professor (the 
Louis Nee1 chair) at Ecole Normale Supkrieure de Lyon, with the support of the Societe 
Lyonnaise de Banque. 
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